RESULTS

Induction of oxidative stress in tobacco seedlings treated with differently coated silver nanoparticles

<u>Renata Biba¹</u>, Petra Cvjetko¹, Karla Košpić¹, Petra Peharec Štefanić¹, Mirta Tkalec¹, Daniel Lyons², Biljana Balen¹

¹Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia,

²Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia

INTRODUCTION

Among various nanomaterials, silver nanoparticles (AgNPs) stand out due to their enhanced antimicrobial effects that have been exploited in many industrial sectors and daily life. Increase in AgNP applications has led to greater potential for their release into the environment, where they can be absorbed by plants and enter the food chain, posing a threat to human health.¹ The main mechanism of AgNP toxicity lies in excessive formation of reactive oxygen species (ROS) and subsequent oxidative stress induction, but the degree of oxidative damage depends on the intrinsic properties of AgNPs (size, shape) and coating), which determine their stability against aggregation and dissolution in the environment.² This study compared the effects of two differently coated AgNPs [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] and ionic silver (AgNO₃) on oxidative stress parameters in tobacco (*Nicotiana tabacum* L.) seedlings.

MATERIALS AND METHODS

UNIVERSITY OF ZAGREB FACULTY OF SCIENCE

Three week old tobacco (*Nicotiana tabacum* L.) seedlings were treated with 100 µM AgNP-PVP, AgNP-CTAB and AgNO₃ for seven days. In situ detection of ROS³ was performed using dihydroethidium for superoxide radical (O_2^{-}) and 2',7'-dichlorodihydrofluorescein diacetate for H_2O_2 . Activity and changes in isoenzyme patterns for superoxide dismutase (SOD)⁴, catalase (CAT)⁵, ascorbate peroxidase (APX)⁶ and pyrogallol peroxidase (PPX)⁶ were analysed spectrophotometrically and in gel, respectively, while their expression was determined with immunoblotting.

Department of **Biology**

ROS in situ detection

Figure 1. O_2^{-} detection in roots of untreated tobacco seedlings (control, A), and seedlings treated with 100 µM of AgNP-PVP (B), AgNP-CTAB (C), AgNO₃ (D); 20x magnification. Total O_2^{-} content (E) measured in 100 cells \pm SE. letters denote significant Different difference among treatments according to Duncan test ($P \le 0.05$).

Figure 2. H₂O₂ detection in roots of untreated tobacco seedlings (control, A), and seedlings treated with 100 µM AgNP-PVP (B), AgNP-CTAB (C), AgNO₃ (D); 20x magnification. Total H_2O_2 content (E) measured in 100 cells \pm SE. Different letters denote significant difference among treatments according to Duncan test ($P \le 0.05$).

Activity and expression of antioxidant enzymes

Figure 5. Expression of SOD, HRP, APX, CAT and actin (loading control) in tobacco seedlings treated with 100 μ M solution of AgNP-PVP (1), AgNP-CTAB (2) or $AgNO_3$ (3). C – control.

Figure 3. Specific activities of SOD (A), APX (B), PPX (C) and CAT (D) in tobacco seedlings treated with 100 μ M solution of AgNP-PVP, AgNP-CTAB or AgNO₃. Values are means \pm SE of two different experiments, each with six replicates. Different letters denote significant difference among treatments according to Duncan test ($P \le 0.05$).

Figure 4. Isoenzyme patterns of SOD (A), APX (B), PPX (C) and CAT (D) in tobacco seedlings treated with 100 μ M solution of AgNP-PVP (1), AgNP-CTAB (2) or AgNO₃ (3). C - control.

CONCLUSION

all Ag treatments significantly enhanced O_2^{-1} and H_2O_2 production in tobacco seedlings

- AgNP-CTAB treatment increased APX and CAT activities, but decreased PPX, while AgNP-PVP and AgNO₃ decreased SOD and APX; isoenzyme patterns also revealed differences in activities of certain isoforms of APX, PPX and CAT among treatments
- even though Western blots showed higher abundance of HRP in all treated seedlings, only AgNO₃ caused changes in expression of other enzymes as well
- these results show that the coating used for AgNP stabilization plays an important role in AgNP toxicity, which cannot be ascribed only to the release of Ag⁺ ions

Literature ¹Yan and Chen (2019), Int J Mol Sci 20: 1003 ²Tejamaya et al. (2012), Environ Sci Technol 46:7011-7017 ³Cvjetko et al. (2018), Environ Sci Pollut Res Int 25:5590-5602 ⁴Beauchamp and Fridovich (1971) Anal Biochem 44:276-287 ⁵ Aebi, H (1984) Methods Enzym 105:121-126 ⁶ Nakano and Asada (1981) Plant Cell Physiol 22:867-880

This work was supported by Science the Croatian Foundation [grant number IP-2014-09-6488] and University of Zagreb by grant number 20281222.

Croatian Science

Foundation